понедельник, 25 марта 2024 г.

The study of heat, thermodynamics, and statistical mechanics

 

The study of heat, thermodynamics, and statistical mechanics

Heat is a form of internal energy associated with the random motion of the molecular constituents of matter or with radiation. Temperature is an average of a part of the internal energy present in a body (it does not include the energy of molecular binding or of molecular rotation). The lowest possible energy state of a substance is defined as the absolute zero (−273.15 °C, or −459.67 °F) of temperature. An isolated body eventually reaches uniform temperature, a state known as thermal equilibrium, as do two or more bodies placed in contact. The formal study of states of matter at (or near) thermal equilibrium is called thermodynamics; it is capable of analyzing a large variety of thermal systems without considering their detailed microstructures.

First law

The first law of thermodynamics is the energy conservation principle of mechanics (i.e., for all changes in an isolated system, the energy remains constant) generalized to include heat.

Second law

The second law of thermodynamics asserts that heat will not flow from a place of lower temperature to one where it is higher without the intervention of an external device (e.g., a refrigerator). The concept of entropy involves the measurement of the state of disorder of the particles making up a system. For example, if tossing a coin many times results in a random-appearing sequence of heads and tails, the result has a higher entropy than if heads and tails tend to appear in clusters. Another formulation of the second law is that the entropy of an isolated system never decreases with time.

Third law

The third law of thermodynamics states that the entropy at the absolute zero of temperature is zero, corresponding to the most ordered possible state.

Statistical mechanics

 

The science of statistical mechanics derives bulk properties of systems from the mechanical properties of their molecular constituents, assuming molecular chaos and applying the laws of probability. Regarding each possible configuration of the particles as equally likely, the chaotic state (the state of maximum entropy) is so enormously more likely than ordered states that an isolated system will evolve to it, as stated in the second law of thermodynamics. Such reasoning, placed in mathematically precise form, is typical of statistical mechanics, which is capable of deriving the laws of thermodynamics but goes beyond them in describing fluctuations (i.e., temporary departures) from the thermodynamic laws that describe only average behaviour. An example of a fluctuation phenomenon is the random motion of small particles suspended in a fluid, known as Brownian motion.

Quantum statistical mechanics plays a major role in many other modern fields of science, as, for example, in plasma physics (the study of fully ionized gases), in solid-state physics, and in the study of stellar structure. From a microscopic point of view the laws of thermodynamics imply that, whereas the total quantity of energy of any isolated system is constant, what might be called the quality of this energy is degraded as the system moves inexorably, through the operation of the laws of chance, to states of increasing disorder until it finally reaches the state of maximum disorder (maximum entropy), in which all parts of the system are at the same temperature, and none of the state’s energy may be usefully employed. When applied to the universe as a whole, considered as an isolated system, this ultimate chaotic condition has been called the “heat death.”

среда, 13 марта 2024 г.

The study of gravitation

 

The study of gravitation

Laser Interferometer Space Antenna (LISA), a Beyond Einstein Great Observatory, is scheduled for launch in 2034. Funded by the European Space Agency, LISA will consist of three identical spacecraft that will trail the Earth in its orbit by about 50 million km (30 million miles). The spacecraft will contain thrusters for maneuvering them into an equilateral triangle, with sides of approximately 5 million km (3 million miles), such that the triangle's centre will be located along the Earth's orbit. By measuring the transmission of laser signals between the spacecraft (essentially a giant Michelson interferometer in space), scientists hope to detect and accurately measure gravity waves.(more)

This field of inquiry has in the past been placed within classical mechanics for historical reasons, because both fields were brought to a high state of perfection by Newton and also because of its universal character. Newton’s gravitational law states that every material particle in the universe attracts every other one with a force that acts along the line joining them and whose strength is directly proportional to the product of their masses and inversely proportional to the square of their separation. Newton’s detailed accounting for the orbits of the planets and the Moon, as well as for such subtle gravitational effects as the tides and the precession of the equinoxes (a slow cyclical change in direction of Earth’s axis of rotation), through this fundamental force was the first triumph of classical mechanics. No further principles are required to understand the principal aspects of rocketry and space flight (although, of course, a formidable technology is needed to carry them out).

The modern theory of gravitation was formulated by Albert Einstein and is called the general theory of relativity. From the long-known equality of the quantity “mass” in Newton’s second law of motion and that in his gravitational law, Einstein was struck by the fact that acceleration can locally annul a gravitational force (as occurs in the so-called weightlessness of astronauts in an Earth-orbiting spacecraft) and was led thereby to the concept of curved space-time. Completed in 1915, the theory was valued for many years mainly for its mathematical beauty and for correctly predicting a small number of phenomena, such as the gravitational bending of light around a massive object. Only in recent years, however, has it become a vital subject for both theoretical and experimental research. (Relativistic mechanics refers to Einstein’s special theory of relativity, which is not a theory of gravitation.)

вторник, 20 февраля 2024 г.

Mechanics

 

Mechanics

Mechanics is generally taken to mean the study of the motion of objects (or their lack of motion) under the action of given forces. Classical mechanics is sometimes considered a branch of applied mathematics. It consists of kinematics, the description of motion, and dynamics, the study of the action of forces in producing either motion or static equilibrium (the latter constituting the science of statics). The 20th-century subjects of quantum mechanics, crucial to treating the structure of matter, subatomic particlessuperfluiditysuperconductivityneutron stars, and other major phenomena, and relativistic mechanics, important when speeds approach that of light, are forms of mechanics that will be discussed later in this section.

In classical mechanics the laws are initially formulated for point particles in which the dimensions, shapes, and other intrinsic properties of bodies are ignored. Thus in the first approximation even objects as large as Earth and the Sun are treated as pointlike—e.g., in calculating planetary orbital motion. In rigid-body dynamics, the extension of bodies and their mass distributions are considered as well, but they are imagined to be incapable of deformation. The mechanics of deformable solids is elasticityhydrostatics and hydrodynamics treat, respectively, fluids at rest and in motion.

The three laws of motion set forth by Isaac Newton form the foundation of classical mechanics, together with the recognition that forces are directed quantities (vectors) and combine accordingly. The first law, also called the law of inertia, states that, unless acted upon by an external force, an object at rest remains at rest, or if in motion, it continues to move in a straight line with constant speed. Uniform motion therefore does not require a cause. Accordingly, mechanics concentrates not on motion as such but on the change in the state of motion of an object that results from the net force acting upon it. Newton’s second law equates the net force on an object to the rate of change of its momentum, the latter being the product of the mass of a body and its velocity. Newton’s third law, that of action and reaction, states that when two particles interact, the forces each exerts on the other are equal in magnitude and opposite in direction. Taken together, these mechanical laws in principle permit the determination of the future motions of a set of particles, providing their state of motion is known at some instant, as well as the forces that act between them and upon them from the outside. From this deterministic character of the laws of classical mechanics, profound (and probably incorrect) philosophical conclusions have been drawn in the past and even applied to human history.

Lying at the most basic level of physics, the laws of mechanics are characterized by certain symmetry properties, as exemplified in the aforementioned symmetry between action and reaction forces. Other symmetries, such as the invariance (i.e., unchanging form) of the laws under reflections and rotations carried out in space, reversal of time, or transformation to a different part of space or to a different epoch of time, are present both in classical mechanics and in relativistic mechanics, and with certain restrictions, also in quantum mechanics. The symmetry properties of the theory can be shown to have as mathematical consequences basic principles known as conservation laws, which assert the constancy in time of the values of certain physical quantities under prescribed conditions. The conserved quantities are the most important ones in physics; included among them are mass and energy (in relativity theory, mass and energy are equivalent and are conserved together), momentumangular momentum, and electric charge.

вторник, 13 февраля 2024 г.

physics science

 

physics

science

 

Physicsscience that deals with the structure of matter and the interactions between the fundamental constituents of the observable universe. In the broadest sense, physics (from the Greek physikos) is concerned with all aspects of nature on both the macroscopic and submicroscopic levels. Its scope of study encompasses not only the behaviour of objects under the action of given forces but also the nature and origin of gravitational, electromagnetic, and nuclear force fields. Its ultimate objective is the formulation of a few comprehensive principles that bring together and explain all such disparate phenomena.

Physics is the basic physical science. Until rather recent times physics and natural philosophy were used interchangeably for the science whose aim is the discovery and formulation of the fundamental laws of nature. As the modern sciences developed and became increasingly specialized, physics came to denote that part of physical science not included in astronomychemistrygeology, and engineering. Physics plays an important role in all the natural sciences, however, and all such fields have branches in which physical laws and measurements receive special emphasis, bearing such names as astrophysicsgeophysicsbiophysics, and even psychophysics. Physics can, at base, be defined as the science of mattermotion, and energy. Its laws are typically expressed with economy and precision in the language of mathematics.

Both experiment, the observation of phenomena under conditions that are controlled as precisely as possible, and theory, the formulation of a unified conceptual framework, play essential and complementary roles in the advancement of physics. Physical experiments result in measurements, which are compared with the outcome predicted by theory. A theory that reliably predicts the results of experiments to which it is applicable is said to embody a law of physics. However, a law is always subject to modification, replacement, or restriction to a more limited domain, if a later experiment makes it necessary.

среда, 20 декабря 2023 г.

 

Types of Light

To understand light you have to know that what we call light is what is visible to us. Visible light is the light that humans can see. Other animals can see different types of light. Dogs can see only shades of gray and some insects can see light from the ultraviolet part of the spectrum. The key thing to remember is that our light is what scientists call visible light.


Scientists also call light 
electromagnetic radiation. Visible light is only one small portion of a family of waves called electromagnetic (EM) radiation. The entire spectrum of these EM waves includes radio waves, which have very long wavelengths and both gamma rays and cosmic rays, which are at the other end of the spectrum and have very small wavelengths. Visible light is near the middle of the spectrum.

It's all Energy

The key thing to remember is that light and EM radiation carry energy. The quantum theory suggests that light consists of very small bundles of energy/particles; it's just that simple. Scientists call those small particles photons, and the wavelength determines the energy and type of EM radiation, and the number of photons tells you how much radiation there is. A lot of photons give a brighter, more intense type of light. Fewer photons give a very dim and less intense light. When you use the dimmer switch on the wall, you are decreasing the number of photons sent from the light bulb. The type of light is the same while the amount has changed.

Different Speeds of Light?

As far as we know, all types of light move at one speed when in a vacuum. The speed of light in a vacuum is 299,792,458 meters per second. That speed is really fast, but even when you're traveling that fast, it takes a while to get places in space. It takes about seven minutes for light from the Sun to reach Earth. It takes over four years for the light from our Sun to get to the nearest star. It would take a particle of light over 100,000 years to get from one side of our galaxy to the other side. All of those values are light moving through a vacuum. You can slow light down in other substances such as the atmosphere, water, or a diamond. Light moves at about 124,000,000 meters per second (less than half the speed in a vacuum) in a diamond.

вторник, 5 декабря 2023 г.

Communications

 

Communications


One of the great changes to our world over the past 100 years has been the invention of electronic communications. It all started with the telegraph and since then new inventions and innovations have created an information age that includes smart phones and high definition video over the internet.

Telegraph

The invention that got electronic communications started was the telegraph. It was invented by Samuel Morse in 1836. He also developed the Morse Code which allowed the signals that the telegraph sent over the wires to represent words and phrases.

Telephone

Around 40 years after the telegraph, Alexander Graham Bell received the patent for the telephone. Now instead of just beeps of sound, a person's voice could be transmitted over long distances of electric wires. Later inventions like faxes and modems would allow other information to pass over the same wires. Large switching networks were built throughout the world allowing telephones in nearly every home to connect with each other.

Fiber optic tubes of glass use light pulses to communicate



Fiber Optics

As the amount of information has grown, more and more data needs to be transmitted over long distances. One of the ways to send data faster is with fiber optics. Fiber optics are long skinny tubes (like wires) made of glass. Instead of electricity they transmit light. Light can travel at much faster speeds and over longer distances than electrical pulses. There are fiber optic connections today that can send 100 billion signals per second!

Radio Frequency

Radios have been used for a long time, but in the 1990s cell phones started to become popular. Cell phones send information using radio frequencies through the air. New technologies have allowed for faster signals and even video to be sent to and from cell phones.

Cell phones use radio frequencies to communicate through the air


Internet

Perhaps the most important invention in the area of electronic communications during recent times is the internet. The internet is made up of millions of electrical and fiber optic links. These links form a network that allows information to get passed and "switched" all over the world. More information is now available at your fingertips and on your computer at home than you could hope to read in a lifetime.

Fun facts about Electronic Communications

  • There are around 250 billion emails sent every day. Around 80% of these are spam.
  • Around 20 hours of video are uploaded to YouTube every minute.
  • Fiber optics are good because they use less energy and are better for the environment than electrical wires. They are also very resistant to weather.
  • The first telephone pole was built in 1876.
  • There are over 4 billion cell phones in the world. Over 100 million cell phones are thrown away every year.
  • The first cell phone was invented by the company Motorola.