воскресенье, 23 марта 2025 г.

Islamic world

 

Islamic world

Ibn al-Haytham (c. 965–1040).

In the 7th to 15th centuries, scientific progress occurred in the Muslim world. Many classic works in IndianAssyrianSassanian (Persian) and Greek, including the works of Aristotle, were translated into Arabic.[9] Important contributions were made by Ibn al-Haytham (965–1040), an Arab[10] or Persian[11] scientist, considered to be a founder of modern optics. Ptolemy and Aristotle theorised that light either shone from the eye to illuminate objects or that "forms" emanated from objects themselves, whereas al-Haytham (known by the Latin name "Alhazen") suggested that light travels to the eye in rays from different points on an object. The works of Ibn al-Haytham and al-Biruni (973–1050), a Persian scientist, eventually passed on to Western Europe where they were studied by scholars such as Roger Bacon and Vitello.[12]

Ibn al-Haytham used controlled experiments in his work on optics, although to what extent it differed from Ptolemy is debated.[13][14] Arabic mechanics like Bīrūnī and Al-Khazini developed sophisticated "science of weight", carrying out measurements of specific weights and volumes.[15]

Ibn Sīnā (980–1037), known as "Avicenna", was a polymath from Bukhara (in present-day Uzbekistan) responsible for important contributions to physics, optics, philosophy and medicine. He published his theory of motion in Book of Healing (1020), where he argued that an impetus is imparted to a projectile by the thrower. He viewed it as persistent, requiring external forces such as air resistance to dissipate it.[16][17][18] Ibn Sina made a distinction between 'force' and 'inclination' (called "mayl"), and argued that an object gained mayl when the object is in opposition to its natural motion. He concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the mayl is spent. This conception of motion is consistent with Newton's first law of motioninertia, which states that an object in motion will stay in motion unless it is acted on by an external force.[16] This idea which dissented from the Aristotelian view was later described as "impetus" by John Buridan, who was likely influenced by Ibn Sina's Book of Healing.[19]

A page from al-Khwārizmī's Algebra.

Hibat Allah Abu'l-Barakat al-Baghdaadi (c. 1080 – c. 1165) adopted and modified Ibn Sina's theory on projectile motion. In his Kitab al-Mu'tabar, Abu'l-Barakat stated that the mover imparts a violent inclination (mayl qasri) on the moved and that this diminishes as the moving object distances itself from the mover.[20] He also proposed an explanation of the acceleration of falling bodies by the accumulation of successive increments of power with successive increments of velocity.[21] According to Shlomo Pines, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration]."[22] Jean Buridan and Albert of Saxony later referred to Abu'l-Barakat in explaining that the acceleration of a falling body is a result of its increasing impetus.[20]

Ibn Bajjah (c. 1085–1138), known as "Avempace" in Europe, proposed that for every force there is always a reaction force. Ibn Bajjah was a critic of Ptolemy and he worked on creating a new theory of velocity to replace the one theorized by Aristotle. Two future philosophers supported the theories Avempace created, known as Avempacean dynamics. These philosophers were Thomas Aquinas, a Catholic priest, and John Duns Scotus.[23] Galileo went on to adopt Avempace's formula "that the velocity of a given object is the difference of the motive power of that object and the resistance of the medium of motion".[23]

Nasir al-Din al-Tusi (1201–1274), a Persian astronomer and mathematician who died in Baghdad, introduced the Tusi coupleCopernicus later drew heavily on the work of al-Din al-Tusi and his students, but without acknowledgment

четверг, 20 марта 2025 г.

Greek concept

 

Greek concept

The modit]ve towards a rational understanding of nature began at least since the Archaic period in Greece (650–480 BCE) with the Pre-Socratic philosophers. The philosopher Thales of Miletus (7th and 6th centuries BCE), dubbed "the Father of Science" for refusing to accept various supernatural, religious or mythological explanations for natural phenomena, proclaimed that every event had a natural cause.[1] Thales also made advancements in 580 BCE by suggesting that water is the basic element, experimenting with the attraction between magnets and rubbed amber and formulating the first recorded cosmologies. Anaximander, developer of a proto-evolutionary theory, disputed Thales' ideas and proposed that rather than water, a substance called apeiron was the building block of all matter. Around 500 BCE, Heraclitus proposed that the only basic law governing the Universe was the principle of change and that nothing remains in the same state indefinitely. He, along with his contemporary Parmenides were among the first scholars to contemplate on the role of time in the universe, a key concept that is still an issue in modern physics.

Aristotle (384–322 BCE)

During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic timesnatural philosophy developed into a field of study. Aristotle (GreekἈριστοτέληςAristotélēs) (384–322 BCE), a student of Plato, promoted the concept that observation of physical phenomena could ultimately lead to the discovery of the natural laws governing them.[citation needed] Aristotle's writings cover physics, metaphysicspoetrytheatermusiclogicrhetoriclinguisticspoliticsgovernmentethicsbiology and zoology. He wrote the first work which refers to that line of study as "Physics" – in the 4th century BCE, Aristotle founded the system known as Aristotelian physics. He attempted to explain ideas such as motion (and gravity) with the theory of four elements. Aristotle believed that all matter was made of aether, or some combination of four elements: earth, water, air, and fire. According to Aristotle, these four terrestrial elements are capable of inter-transformation and move toward their natural place, so a stone falls downward toward the center of the cosmos, but flames rise upward toward the circumference. Eventually, Aristotelian physics became popular for many centuries in Europe, informing the scientific and scholastic developments of the Middle Ages. It remained the mainstream scientific paradigm in Europe until the time of Galileo Galilei and Isaac Newton.

Early in Classical Greece, knowledge that the Earth is spherical ("round") was common. Around 240 BCE, as the result of a seminal experimentEratosthenes (276–194 BCE) accurately estimated its circumference. In contrast to Aristotle's geocentric views, Aristarchus of Samos (GreekἈρίσταρχοςc. 310 – c. 230 BCE) presented an explicit argument for a heliocentric model of the Solar System, i.e. for placing the Sun, not the Earth, at its centre. Seleucus of Seleucia, a follower of Aristarchus' heliocentric theory, stated that the Earth rotated around its own axis, which, in turn, revolved around the Sun. Though the arguments he used were lost, Plutarch stated that Seleucus was the first to prove the heliocentric system through reasoning.

The ancient Greek mathematician Archimedes, developer of ideas regarding fluid mechanics and buoyancy.

In the 3rd century BCE, the Greek mathematician Archimedes of Syracuse GreekἈρχιμήδης (287–212 BCE) – generally considered to be the greatest mathematician of antiquity and one of the greatest of all time – laid the foundations of hydrostaticsstatics and calculated the underlying mathematics of the lever. A scientist of classical antiquity, Archimedes also developed elaborate systems of pulleys to move large objects with a minimum of effort. The Archimedes' screw underpins modern hydroengineering, and his machines of war helped to hold back the armies of Rome in the First Punic War. Archimedes even tore apart the arguments of Aristotle and his metaphysics, pointing out that it was impossible to separate mathematics and nature and proved it by converting mathematical theories into practical inventions. Furthermore, in his work On Floating Bodies, around 250 BCE, Archimedes developed the law of buoyancy, also known as Archimedes' principle. In mathematics, Archimedes used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave a remarkably accurate approximation of pi. He also defined the spiral bearing his name, formulae for the volumes of surfaces of revolution and an ingenious system for expressing very large numbers. He also developed the principles of equilibrium states and centers of gravity, ideas that would influence future scholars like Galileo, and Newton.

Hipparchus (190–120 BCE), focusing on astronomy and mathematics, used sophisticated geometrical techniques to map the motion of the stars and planets, even predicting the times that Solar eclipses would happen. He added calculations of the distance of the Sun and Moon from the Earth, based upon his improvements to the observational instruments used at that time. Another of the early physicists was Ptolemy (90–168 CE) during the time of the Roman Empire. Ptolemy was the author of several scientific treatises, at least three of which were of continuing importance to later Islamic and European science. The first is the astronomical treatise now known as the Almagest (in Greek, Ἡ Μεγάλη Σύνταξις, "The Great Treatise", originally Μαθηματικὴ Σύνταξις, "Mathematical Treatise"). The second is the Geography, which is a thorough discussion of the geographic knowledge of the Greco-Roman world.

Much of the accumulated knowledge of the ancient world was lost. Even of the works of the many respectable thinkers, few fragments survive. Although he wrote at least fourteen books, almost nothing of Hipparchus' direct work survived. Of the 150 reputed Aristotelian works, only 30 exist, and some of those are "little more than lecture notes".

суббота, 15 марта 2025 г.

History of physics

 


History of physics

Physics is a branch of science in which the primary objects of study are matter and energy. These topics were discussed across many cultures in ancient times by philosophers, but they had no means to distinguish causes of natural phenomena from superstitions.

The Scientific Revolution of the 17th century, especially the discovery of the law of gravity, began a process of knowledge accumulation and specialization that gave rise to the field of physics.

Mathematical advances of the 18th century gave rise to classical mechanics, and the increased used of the experimental method led to new understanding of thermodynamics.

In the 19th century, the basic laws of electromagnetism and statistical mechanics were discovered.

At the beginning of the 20th century, physics was transformed by the discoveries of quantum mechanics, relativity, and atomic theory.

Physics today may be divided loosely into classical physics and modern physics.

Ancient history


Elements of what became physics were drawn primarily from the fields of astronomyoptics, and mechanics, which were methodologically united through the study of geometry. These mathematical disciplines began in antiquity with the Babylonians and with Hellenistic writers such as Archimedes and PtolemyAncient philosophy, meanwhile, included what was called "Physics".